即将为您呈现《同构思维在解析几何中的妙用》

正在加载数学插件或排版插件
背景图
同构思维在解析几何中的妙用

同构思维提高效率

圆锥曲线的有关问题变量多,运算量大,有时部分学生在考试过程中不易做对。同构思想在解决问题时能优化计算,比起以往联立直线与曲线方程的常规方法,显然简便许多。当题目中出现具有相同结构、相同式子时,或过某一点处的切线等相似结构时,可以考虑采用同构法(例如,两点均由同一双曲线和同一直线相交而得,或两点均是过同一定点所作的双曲线切线的切点,如此,两点坐标均遵循相同的方程组,化简该方程组得到的一元二次方程可使用韦达定理),从而达到提高解题效率的目的。

不要刻意使用同构法

并不是所有的圆锥曲线大题都可以用同构法,相反,只有一小部分可以使用。尽管这部分题目的规律有迹可循(如上所述),但因同构思维并不是单独的考点,因此笔者仍建议考生见招拆招、顺其自然,而不要刻意凑同构,以免考场上因凑不出同构而白白浪费时间。

  1. (2022年新高考I卷21题)已知点\(A(2,1)\)在双曲线\(C\):\(\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{a^{2}-1}=1\)\((a>1)\)上,直线\(l\)交双曲线\(C\)\(P,Q\)两点,直线\(AP,AQ\)的斜率之和为\(0\).求\(l\)的斜率.

    答案

    双曲线方程为\(\dfrac{x^{2}}{2}-y^{2}=1\)\(k=-1.\)

    设而不求

    设直线 \(l_{PQ}\)\(y = kx + m\)\(P(1,i)\)\(Q(x_0,y_0)\)

    将条件\(\overrightarrow{AP}+\overrightarrow{AQ}=\overrightarrow{0}\)坐标化消去,得

    \[\dfrac{k(x_0^2+m-1)}{2x_0k^2+(m-1-2k)(x_0+2)}-\dfrac{4(m - 1)}{2(x_0 - 2)} = 0\]

    \(\begin{align}k_{AP}+k_{AQ}&=\frac{y_1 - 1}{x_1 - 2}+\frac{y_2 - 1}{x_2 - 2}\\&=\frac{kx_1 + m - 1}{x_1 - 2}+\frac{kx_2 + m - 1}{x_2 - 2}\\&=\frac{2kx_1x_2+(m - 1 - 2k)(x_1 + x_2)-4(m - 1)}{(x_1 - 2)(x_2 - 2)}\\&=0\end{align}\)

    联立直线\(PQ\)与双曲线方程,利用韦达定理化简得\(\begin{align*}4(k + 1)(m + 2k - 1)&=0\end{align*}\)

    分类讨论得\(\begin{align*}k = -1.\end{align*}\)

    设而求之

    易知直线\(AP\)\(AQ\)的斜率存在,设\(l_{AP}:y - 1 = k_1(x - 2)\)\(l_{AQ}:y - 1 = k_2(x - 2)\)

    联立双曲线方程,

    求得\(P\left(\dfrac{-4k_{1}^{2}+4k_{1}-2}{1 - 2k_{1}^{2}},\dfrac{6k_{1}^{2}-4k_{1}+1}{1 - 2k_{1}^{2}}\right)\)

    \(Q\left(\dfrac{-4k_{2}^{2}+4k_{2}-2}{1 - 2k_{2}^{2}},\dfrac{6k_{2}^{2}-4k_{2}+1}{1 - 2k_{2}^{2}}\right)\)

    结合条件\(k_1 + k_2 = 0\)\(k_{PQ}=\dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}=\dfrac{4k_{1}-k_{1}\left(x_{1}+x_{2}\right)}{x_{2}-x_{1}}\)

    代入坐标得\(k_{PQ}=-1\)

  2. 已知椭圆\(C\)的标准方程为\(\dfrac{x^{2}}{5}+y^{2}=1\),过椭圆\(C\)的右焦点\(F\)的直线\(l\)交椭圆于\(A\)\(B\)两点,交\(y\)轴于点\(M\),若\(\overrightarrow{MA}=\lambda_{1}\overrightarrow{AF}\)\(\overrightarrow{MB}=\lambda_{2}\overrightarrow{BF}\),求证:\(\lambda_{1}+\lambda_{2}\)为定值。

    解析

    由方程①②得\(A\left(\dfrac{2\lambda_{1}}{1+\lambda_{1}},\dfrac{-2}{m(1+\lambda_{1})}\right)\)\(B\left(\dfrac{2\lambda_{2}}{1+\lambda_{2}},\dfrac{-2}{m(1+\lambda_{2})}\right)\)

    \(A\)\(B\)代入椭圆方程得 \[\begin{cases}\dfrac{4\lambda_{1}^{2}}{5(1+\lambda_{1})^{2}}+\dfrac{4}{m^{2}(1+\lambda_{1})^{2}}=1\\\dfrac{4\lambda_{2}^{2}}{5(1+\lambda_{2})^{2}}+\dfrac{4}{m^{2}(1+\lambda_{2})^{2}}=1\end{cases}\]

    化简得\(\begin{cases}m^{2}\lambda_{1}^{2}+10m^{2}\lambda_{1}+5m^{2}-20=0,\\m^{2}\lambda_{2}^{2}+10m^{2}\lambda_{2}+5m^{2}-20=0,\end{cases}\)

    \(\lambda_{1}\)\(\lambda_{2}\)是方程\(m^{2}x^{2}+10m^{2}x + 5m^{2}-20 = 0\)的两根,

    由韦达定理得\(\lambda_{1}+\lambda_{2}=-10\)

  3. (2019年全国卷III理21题)如图 2,曲线\(C:y=\dfrac{1}{2}x^{2}\)\(D\)为直线\(y = -\dfrac{1}{2}\)上的点,过\(D\)作曲线\(C\)的两条切线,切点分别为\(A\)\(B\)。证明:直线\(AB\)过定点。

    解析

    \(A(x_{1},y_{1})\)\(B(x_{2},y_{2})\)\(y^{\prime}=x\)\(k_{AD}=x_{1}\)\(k_{BD}=x_{2}\)

    \(AD:y - y_{1}=x_{1}(x - x_{1})\)\(l_{BD}:y - y_{2}=x_{2}(x - x_{2})\)

    \(D(t,-\dfrac{1}{2})\)代入两切线方程得 \[\begin{cases}-\dfrac{1}{2}-y_{1}=x_{1}(t - x_{1})\\-\dfrac{1}{2}-y_{2}=x_{2}(t - x_{2})\end{cases}\]

    化简\(\begin{cases}x_{1}t - x_{1}^{2}+y_{1}+\dfrac{1}{2}=0,\\x_{2}t - x_{2}^{2}+y_{2}+\dfrac{1}{2}=0\end{cases}\)

    由点\(A\)\(B\)在抛物线上知\(x^{2}=2y\),消\(x^{2}\)

    \(\begin{cases}x_{1}t - y_{1}+\dfrac{1}{2}=0,\\x_{2}t - y_{2}+\dfrac{1}{2}=0,\end{cases}\)

    从而\(A(x_{1},y_{1})\)\(B(x_{2},y_{2})\)是方程\(tx - y+\dfrac{1}{2}=0\)的两根,

    即点\(A\)\(B\)在直线\(tx - y+\dfrac{1}{2}=0\)上,则\(l_{AB}:y = tx+\dfrac{1}{2}\),定点为\((0,\dfrac{1}{2})\)

  4. 已知\(A\)\(B\)分别为椭圆\(E:\dfrac{x^{2}}{9}+y^{2}=1\)的左、右顶点,\(P\)为直线\(x = 6\)上的动点,\(PA\)\(E\)的另一交点为\(C\)\(PB\)\(E\)的另一交点为\(D\)。证明:直线\(CD\)过定点。

    解析

    \(C(x_{1},y_{1})\)\(D(x_{2},y_{2})\)\(P(6,t)\),若\(t\neq0\)

    则设直线\(CD\)的方程为\(x = my + n\)\(-3\lt n\lt3\)

    椭圆和直线\(CD\)联立得\((9 + m^{2})y^{2}+2mny + n^{2}-9 = 0\)

    由韦达定理:\(y_{1}+y_{2}=-\dfrac{2mn}{9 + m^{2}}\)

    \(y_{1}y_{2}=\dfrac{n^{2}-9}{9 + m^{2}}\)

    因为\(A\)\(C\)\(P\)三点共线,得\(\dfrac{y_{1}}{x_{1}+3}=\dfrac{t}{9}\)

    所以\(y_{1}=\dfrac{t}{9}(x_{1}+3)\)

    等号两侧同时乘以\(y_{2}\)得:\(y_{1}y_{2}=\dfrac{t}{9}(x_{1}+3)y_{2}\)

    又因为\(D\)\(B\)\(P\)三点共线,得\(\dfrac{y_{2}}{x_{2}-3}=\dfrac{t}{3}\),所以\(y_{2}=\dfrac{t}{3}(x_{2}-3)\)

    等号两侧同时乘以\(y_{1}\),得\(y_{1}y_{2}=\dfrac{t}{3}(x_{2}-3)y_{1}\)

    所以\(\dfrac{t}{9}(x_{1}+3)y_{2}=\dfrac{t}{3}(x_{2}-3)y_{1}\)

    可得\(3y_{1}(x_{2}-3)=y_{2}(x_{1}+3)\),所以\(3y_{1}y_{2}(x_{2}-3)(x_{2}+3)=y_{2}^{2}(x_{1}+3)(x_{2}+3)\)

    所以\(3y_{1}y_{2}(x_{2}^{2}-9)=y_{2}^{2}(x_{1}+3)(x_{2}+3)\)

    又因为\(D\)点在椭圆上,所以\(\dfrac{x_{2}^{2}}{9}+y_{2}^{2}=1\)

    \(x_{2}^{2}-9=-9y_{2}^{2}\),所以\(y_{2}^{2}(x_{1}+3)(x_{2}+3)=-27y_{1}y_{2}^{3}\)

    \((x_{1}+3)(x_{2}+3)=-27y_{1}y_{2}\),所以\((x_{1}+3)(x_{2}+3)+27y_{1}y_{2}=0\)

    又因为\(x_{1}=my_{1}+n\)\(x_{2}=my_{2}+n\)

    代入化简整理得\((m^{2}+27)y_{1}y_{2}+(3m+mn)(y_{1}+y_{2})+n^{2}+6n+9 = 0\)

    将①②代入得\((n^{2}-9)(m^{2}+27)-2mn(3m + mn)+(n + 3)^{2}(9 + m^{2})=0\)

    整理得\(2n^{2}+3n - 9 = 0\),解得\(n=\dfrac{3}{2}\)\(n = -3\)(舍),

    所以直线\(CD\)的方程为\(x = my+\dfrac{3}{2}\),所以直线\(CD\)过定点\((\dfrac{3}{2},0)\)。若\(t = 0\),则设直线\(CD\)的方程为\(y = 0\),显然过定点\((\dfrac{3}{2},0)\)

    综上,直线\(CD\)过定点。

  5. (2018 年浙江卷 21,节选)如图所示,已知点\(P\)\(y\)轴左侧(不含\(y\)轴)一点,抛物线\(C:y^{2}=4x\)上存在不同的两点\(A\)\(B\)满足\(PA\)\(PB\)的中点均在\(C\)上。设\(AB\)中点为\(M\),证明:\(PM\)垂直于\(y\)轴。

    解析

    \(A(x_{1},y_{1})\)\(B(x_{2},y_{2})\)\(P(x_{0},y_{0})\)

    \(PA\)\(PB\)的中点分别是\(D(\dfrac{x_{0}+x_{1}}{2},\dfrac{y_{0}+y_{1}}{2})\)\(E(\dfrac{x_{0}+x_{2}}{2},\dfrac{y_{0}+y_{2}}{2})\)

    因为点\(D\)在抛物线上,

    \(\begin{cases}(\dfrac{y_{0}+y_{1}}{2})^{2}=4\cdot\dfrac{x_{0}+x_{1}}{2},\\y_{1}^{2}=4x_{1},\end{cases}\)

    化简可得\(y_{1}^{2}-2y_{0}y_{1}+8x_{0}-y_{0}^{2}=0\)

    同理可得\(y_{2}^{2}-2y_{0}y_{2}+8x_{0}-y_{0}^{2}=0\)

    所以\(y_{1}\)\(y_{2}\)是方程\(y^{2}-2y_{0}y + 8x_{0}-y_{0}^{2}=0\)的两根,

    \(y_{1}+y_{2}=2y_{0}\),即\(y_{0}=\dfrac{y_{1}+y_{2}}{2}\)

  6. 如图所示,过椭圆\(C:\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1\)\((a>b\geq0)\)上一点\(P\)\(x\)轴的垂线,垂足为\(F_{1}\),已知\(F_{1}\)\(F_{2}\)分别为椭圆\(C\)的左、右焦点,\(A\)\(B\)分别是椭圆\(C\)的右顶点、上顶点,且\(AB\mathop{//}OP\)\(\vert F_{2}A\vert=\sqrt{2}-1\)

    (1)求椭圆\(C\)的方程;

    (2)过点\(F_{1}\)的直线\(l\)交椭圆\(C\)\(M\)\(N\)两点,记直线\(PM\)\(PN\)\(MN\)的斜率分别为\(k_{1}\)\(k_{2}\)\(k\),问:\(k_{1}k_{2}-2k\)是否为定值?请说明理由。

    解析

    (1)椭圆的方程为\(\dfrac{x^{2}}{2}+y^{2}=1\)(求解过程略)。

    (2)直线\(PM\)\(PN\)具有形上的对等性,即直线\(PM\)\(MN\)的相交过程与直线\(PN\)\(MN\)的相交过程完全一致,点\(M\)\(N\)的产生上也具有对等性,故而我们可用同构法选择其一进行研究。

    \(M(x_{1},y_{1})\)\(N(x_{2},y_{2})\)\(PN:y-\dfrac{1}{\sqrt{2}}=k_{1}(x + 1)\)

    联立\(\begin{cases}y = k_{1}(x + 1)+\dfrac{1}{\sqrt{2}},\\y = k(x + 1),\end{cases}\)

    \(\begin{cases}x = -1+\dfrac{1}{\sqrt{2}(k - k_{1})},\\y=\dfrac{k}{\sqrt{2}(k - k_{1})},\end{cases}\)

    \(M\left(-1+\dfrac{1}{\sqrt{2}(k - k_{1})},\dfrac{k}{\sqrt{2}(k - k_{1})}\right)\)

    同理可得\(N\left(-1+\dfrac{1}{\sqrt{2}(k - k_{2})},\dfrac{k}{\sqrt{2}(k - k_{2})}\right)\)

    \(M\)代入椭圆得\(\left[-1+\dfrac{1}{\sqrt{2}(k - k_{1})}\right]^{2}+2\left[\dfrac{k}{\sqrt{2}(k - k_{1})}\right]^{2}=2\) \(\Rightarrow2k_{1}^{2}-2(2k+\sqrt{2})k_{1}+(2\sqrt{2}k - 1)=0\)

    同理可得\(2k_{2}^{2}-2(2k+\sqrt{2})k_{2}+(2\sqrt{2}k - 1)=0\)

    \(k_{1}\)\(k_{2}\)是方程\(2x^{2}-2(2k+\sqrt{2})x+(2\sqrt{2}k - 1)=0\)的两根,

    所以\(k_{1}+k_{2}=2k+\sqrt{2}\),则\(k_{1}+k_{2}-2k=\sqrt{2}\)

  7. 在直角坐标系\(xOy\)中,抛物线\(C:y^{2}=2px\)\((p>0)\)与直线\(l:x = 4\)交于\(P\)\(Q\)两点,且\(OP\perp OQ\)。抛物线\(C\)的准线与\(x\)轴交于点\(M\)\(G\)是以\(M\)为圆心,\(OM\)为半径的圆上的一点(非原点),过点\(G\)作抛物线\(C\)的两条切线,切点分别为\(A\)\(B\)

    (1)求抛物线\(C\)的方程;

    (2)求\(\triangle ABG\)面积的取值范围。

    解析

    (1)\(y^{2}=4x\)

    (2)计算抛物线\(C:y^{2}=4x\)在点\(N(x_{N},y_{N})\)处的切线方程为\(2x - y_{N}y + 2x_{N}=0\)

    对抛物线方程\(y^{2}=4x\)求导得\(2yy^{\prime}=4\),在\(N\)点处的斜率为\(\dfrac{2}{y_{N}}\)

    \(N\)点处的切线方程为\(y - y_{N}=\dfrac{2}{y_{N}}(x - x_{N})\)

    整理得\(2x - y_{N}y + 2x_{N}=0\)

    \(A(x_{1},y_{1})\)\(B(x_{2},y_{2})\)\(G(x_{3},y_{3})\)

    则直线\(GA\)\(GB\)的方程分别为\(2x - y_{1}y + 2x_{1}=0\)\(2x - y_{2}y + 2x_{2}=0\)

    因为点\(G\)在直线\(GA\)\(GB\)上,所以\(\begin{cases}2x_{3}-y_{1}y_{3}+2x_{1}=0\\2x_{3}-y_{2}y_{3}+2x_{2}=0\end{cases}\)

    ①②两式相减得\(\dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}=\dfrac{2}{y_{3}}\)

    并由①得\(y_{1}y_{3}-2x_{1}=2x_{3}\)。直线\(AB\)的斜率为\(\dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}=\dfrac{2}{y_{3}}\)

    所以直线\(AB\)的方程为\(2x - y_{3}y + 2x_{3}=0\)

  8. 已知椭圆\(F:\dfrac{x^{2}}{3}+\dfrac{y^{2}}{2}=1\)\(B\)\(D\)是椭圆上关于原点对称的两点,设以\(BD\)为对角线的椭圆内接平行四边形\(ABCD\)的一组邻边\(AB\)\(BC\)斜率分别为\(k_{1}\)\(k_{2}\),则\(k_{1}\cdot k_{2}=\underline{-\dfrac{2}{3}}\)

    解析

    因为\(B\)\(D\)是椭圆\(F:\dfrac{x^{2}}{3}+\dfrac{y^{2}}{2}=1\)上关于原点对称的两点,不妨设\(B(x_{1},y_{1})\)

    \(D(-x_{1},-y_{1})\),且\(\dfrac{x_{1}^{2}}{3}+\dfrac{y_{1}^{2}}{2}=1\)

    又平行四边形\(ABCD\)是椭圆\(F:\dfrac{x^{2}}{3}+\dfrac{y^{2}}{2}=1\)内接平行四边形,则点\(A\)\(C\)关于原点对称,

    不妨设\(A(x_{2},y_{2})\),则\(C(-x_{2},-y_{2})\),且\(\dfrac{x_{2}^{2}}{3}+\dfrac{y_{2}^{2}}{2}=1\)

    直线\(BA\)\(BC\)的斜率分别为:\(k_{1}=\dfrac{y_{1}-y_{2}}{x_{1}-x_{2}}\)\(k_{2}=\dfrac{y_{1}+y_{2}}{x_{1}+x_{2}}\)

    因此\(k_{1}\cdot k_{2}=\dfrac{y_{1}^{2}-y_{2}^{2}}{x_{1}^{2}-x_{2}^{2}}\)

    \(\dfrac{x_{1}^{2}}{3}+\dfrac{y_{1}^{2}}{2}=1=\dfrac{x_{2}^{2}}{3}+\dfrac{y_{2}^{2}}{2}\)

    \(\dfrac{x_{1}^{2}-x_{2}^{2}}{3}=-\dfrac{y_{1}^{2}-y_{2}^{2}}{2}\)

    所以\(k_{1}\cdot k_{2}=-\dfrac{2}{3}\)

参考文献

  • 常梨君,金一鸣.“形”中挖“同”“数”中寻“构”——记“同构思想”在解析几何中的应用[J].中学数学月刊,2022,(11):69-72.
  • 李声武.同构法在解题中的应用[J].数理天地(高中版),2023,(01):23-24.
  • 刘群.同构思维在解析几何中的“妙用”[J].高中数理化,2021,(04):8-9.
  • 杨科荣.同构方程视角下高中数学解题思考——以解析几何试题为例[J].数理天地(高中版),2024,(03):48-50.

文档的其它版本

下载Word文档

微信公众号文章

本文收录于 高考笔记 (12/15)
上一篇
选择题的特殊技巧
下一篇
几何法的妙用(不含圆锥曲线二级结论)
本文收录于 高中数学 (8/11)
上一篇
选择题的特殊技巧
下一篇
几何法的妙用(不含圆锥曲线二级结论)

发表您的看法

加载失败,请刷新页面。若该问题持续出现,则可能是评论区被禁用。