\(\sin x\sim x\)
这是最重要的等价无穷小,后文其它几个等价无穷小和\(\sin x\)的导数推导均需要用到\(\sin x\sim x\)。下面引用知友@半个冯博士的简洁证明。
\[S_{\triangle AOB} < S_{扇AOB} < S_{\triangle AOD}\]
代入面积公式:
\[\frac{1}{2} \sin x < \frac{1}{2} x < \frac{1}{2} \tan x\]
整理:
\[1<\frac{x}{\sin x} < \frac{1}{\cos x} \quad\left(0 < x < \frac{\pi}{2}\right)\]
\[\cos x < \frac{\sin x}{x} < 1 \quad\left(0 < x < \frac{\pi}{2}\right)\]
根据夹逼准则,两边取极限:
\[1=\lim_{x \rightarrow 0} \cos x ≤ \lim_{x \rightarrow 0} \frac{\sin x}{x} ≤ 1\]
\[\therefore \lim_{x \rightarrow 0} \frac{\sin x}{x}=1\]
当\(x\)为负时同理。
\(\tan x \sim x\)
\[\lim\limits_{x\to 0 } \dfrac{\tan x}{x}=\lim\limits_{x \to 0 } \dfrac{\sin x}{x\cos x}=\lim \limits_{x\to 0 } \dfrac{\sin x}{x} \cdot \lim \limits_{x \to 0 } \dfrac{1}{\cos x}=1\]
\(1-\cos x \sim \dfrac{1}{2}x^2\)
\[\lim \limits_{x \to 0 } \dfrac{1-\cos x}{x^{2}}=\lim \limits_{x \to 0 } \dfrac{2 \sin ^{2} \frac{x}{2}}{4 \cdot\left(\frac{x}{2}\right)^{2}}=\dfrac{1}{2} \cdot\left(\lim \limits_{x \to 0 } \dfrac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^{2}=\dfrac{1}{2}\]
另解: \[\lim \limits_{x \to 0 } \dfrac{1-\cos x}{x^{2}}=\lim \limits_{x \to 0 }\left(\dfrac{\sin ^{2} x}{x^{2}} \cdot \dfrac{1}{1+\cos x}\right)=\dfrac{1}{2}\]
\(\arcsin x \sim x\)
令\(t=\arcsin x\),则\(x=\sin t\)
\(\lim \limits_{x\rightarrow0} \dfrac{\arcsin x}{x}=\lim \limits_{t\rightarrow0}\dfrac{t}{\sin t}=\lim \limits_{t\rightarrow0}\dfrac{1}{\dfrac{\sin t}{t}}=1\)
\(\arctan x \sim x\)
令\(t=\arctan x\), 则\(x=\tan t\),当\(x \rightarrow 0\) 时,\(t \rightarrow 0\).
\[\lim \limits_{x \to 0 } \dfrac{\arctan x}{x}=\lim \limits_{t \to 0 } \dfrac{t}{\tan t}=\lim \limits_{t \to 0 } \dfrac{t \cos t}{\sin t}=\lim \limits_{t \to 0 } \dfrac{t}{\sin t} \cdot \lim \limits_{t \to 0 } \cos t=1\]
\(\sec x-1 \sim \dfrac{x^{2}}{2}\)
\[\lim \limits_{x \to 0 } \dfrac{\dfrac{1}{\cos x}-1}{x^{2}}=\lim \limits_{x \to 0 } \dfrac{1-\cos x}{x^{2} \cdot \cos x}=\dfrac{\dfrac{1}{2} x^{2}}{x^{2} \cdot \cos x}=\dfrac{1}{2}\]
\(\tan x-\sin x \sim \dfrac{1}{2} x^{3}\)
\[\lim \limits_{x \to 0 } \dfrac{\tan x-\sin x}{\dfrac{1}{2} x^{3}}=\lim \limits_{x \to 0 } \dfrac{\tan x}{x} \cdot \dfrac{1-\cos x}{\dfrac{1}{2} x^{2}}=\lim \limits_{x \to 0 } \dfrac{\tan x}{x} \cdot \lim \limits_{x \to 0 } \dfrac{1-\cos x}{\dfrac{1}{2} x^{2}}=1\]
发表您的看法