洛必达法则内容
定理1:0/0型
若:
\(\lim\limits_{x \to a} f(x) = \lim\limits_{x \to a} g(x) = 0\),
\(f(x), g(x)\)在\(\mathring{U}(a)\)(点\(a\)的某去心邻域)内可导,
\(g^{\prime}(x) \neq 0\),
\(\lim\limits_{x \to a} \dfrac{f^{\prime}(x)}{g^{\prime}(x)} = A\)(\(A\)为有限数或无穷).
则\(\lim\limits_{x \to a} \dfrac{f(x)}{g(x)} = \lim\limits_{x \to a} \dfrac{f^{\prime}(x)}{g^{\prime}(x)} = A\)。
其中\(x \to a\)改为\(x \to a + 0\)或\(x \to a - 0\)结论仍然成立。
定理1证明
证明:如果\(f(x), g(x)\)在\(x = a\)处连续,显然有\(f(a) = 0, g(a) = 0\)。如果\(x = a\)是\(f(x)\),\(g(x)\)的不连续点,因为极限存在,一定是可去间断点。不妨设\(f(a) = 0, g(a) = 0\),则可以认为\(f(x)\)与\(g(x)\)在\(x = a\)处连续。设\(x\)为\(a\)的邻域内一点,那么,在以\(x\)及\(a\)为端点的区间上,柯西中值定理的条件均满足,因此有 \[\dfrac{f(x)}{g(x)} = \dfrac{f(x) - f(a)}{g(x) - g(a)} = \dfrac{f^{\prime}(\xi)}{g^{\prime}(\xi)}\] 其中ξ在\(x\)与\(a\)之间,故当\(x \to a\)时,\(\xi \to a\),对两端取极限得 \[\lim\limits_{x \to a} \dfrac{f(x)}{g(x)} = \lim\limits_{x \to a} \dfrac{f^{\prime}(\xi)}{g^{\prime}(\xi)} = \lim\limits_{x \to a} \dfrac{f^{\prime}(x)}{g^{\prime}(x)}\] 故定理1成立。
定理2:∞/∞型
若:
\(\lim\limits_{x \to a} f(x) = \lim\limits_{x \to a} g(x) = \infty\),
\(f(x)\)和\(g(x)\)在\(\mathring{U}(a)\)内可导,
\(g^{\prime}(x) \neq 0\),
\(\lim\limits_{x \to a} \dfrac{f^{\prime}(x)}{g^{\prime}(x)} = A\)(\(A\)为有限数或无穷)。
则\(\lim\limits_{x \to a} \dfrac{f(x)}{g(x)} = \lim\limits_{x \to a} \dfrac{f^{\prime}(x)}{g^{\prime}(x)} = A\)。
其中\(x \to a\)改为\(x \to a + 0\)或\(x \to a - 0\)结论仍然成立。
定理2证明
证明:∵\(\lim\limits_{x \to a} \dfrac{f^{\prime}(x)}{g^{\prime}(x)} = A\),∴对\(\forall \varepsilon > 0 \exists x_{1} \in \mathring{U}(a)\),对于一切\(x \in (a, x_{1})\)(或\(x \in (x_{1}, a)\)),都有 \[\left| \dfrac{f^{\prime}(x)}{g^{\prime}(x)} - A \right| < \dfrac{\varepsilon}{2}, \tag{3}\]
对\(f(x)\)与\(g(x)\)在\([x, x_{1}]\)上应用柯西中值定理,则有 \[\left| \dfrac{f(x_{1}) - f(x)}{g(x_{1}) - g(x)} - A \right| = \dfrac{f^{\prime}(\xi)}{g^{\prime}(\xi)} \tag{4}\]
(4)式中\(\xi \in (x, x_{1}) \subset (a, x_{1})\).
由(3),(4)可得 \[\left| \dfrac{f(x_{1}) - f(x)}{g(x_{1}) - g(x)} - A \right| < \dfrac{\varepsilon}{2}, \tag{5}\]
又因为,
\(\left| \dfrac{f(x)}{g(x)} - \dfrac{f(x_{1}) - f(x)}{g(x_{1}) - g(x)} \right|\)\(= \left| \dfrac{f(x_{1}) - f(x)}{g(x_{1}) - g(x)} \right| \cdot \left| \dfrac{g(x_{1}) - g(x) \cdot f(x)}{[f(x_{1}) - f(x)] \cdot g(x)} - 1 \right|\)\(= \left| \dfrac{f(x_{1}) - f(x)}{g(x_{1}) - g(x)} \right| \cdot \left| \dfrac{g(x_{1}) / g(x) - 1}{f(x_{1}) / f(x) - 1} - 1 \right|\),
由(5)式可知,当\(x \rightarrow a\)时,\(\dfrac{f(x_{1}) - f(x)}{g(x_{1}) - g(x)}\)是有界量,又由\(\lim\limits_{x \to a} f(x) = \lim\limits_{x \to a} g(x) = \infty\),当\(x \rightarrow a\)时, \(\dfrac{g(x_{1}) / g(x) - 1}{f(x_{1}) / f(x) - 1} - 1\)是无穷小量,进而有,当\(x \rightarrow a\)时,\(\left| \dfrac{f(x)}{g(x)} - \dfrac{f(x_{1}) - f(x)}{g(x_{1}) - g(x)} \right|\)也是无穷小量,即\(∃δ > 0\),使得当\(a < x < a + \delta\)时有 \(\left| \dfrac{f(x)}{g(x)} - \dfrac{f(x_{1}) - f(x)}{g(x_{1}) - g(x)} \right| < \dfrac{\varepsilon}{2}\).
进而对一切\(a < x < a + \delta\),由(5)式可得\(\left| \dfrac{f(x)}{g(x)} - A \right|\)\(= \left| \dfrac{f(x)}{g(x)} - \dfrac{f(x_{1}) - f(x)}{g(x_{1}) - g(x)} + \dfrac{f(x_{1}) - f(x)}{g(x_{1}) - g(x)} - A \right|\)\(\leq \left| \dfrac{f(x)}{g(x)} - \dfrac{f(x_{1}) - f(x)}{g(x_{1}) - g(x)} \right| + \left| \dfrac{f(x_{1}) - f(x)}{g(x_{1}) - g(x)} - A \right|\)\(< \varepsilon\).
故有\(\lim\limits_{x \to a} \dfrac{f(x)}{g(x)} = \lim\limits_{x \to a} \dfrac{f^{\prime}(x)}{g^{\prime}(x)} = A\).
在定理2中,若对条件进行弱化,洛必达法则仍然成立,即不必验证分子\(f(x)\)是否为无穷大,也可利用洛必达法则求解极限,进而得到洛必达法则的一般情形.
定理3:广义∞/∞型
若:
\(\lim\limits_{x \to a} g(x) = \infty\),
\(f(x), g(x)\)在\(\mathring{U}(a)\)内可导,
\(g^{\prime}(x) \neq 0\)
\(\lim\limits_{x \to a} \dfrac{f^{\prime}(x)}{g^{\prime}(x)} = A\)(\(A\)为有限数或无穷).
则\(\lim\limits_{x \to a} \dfrac{f(x)}{g(x)} = \lim\limits_{x \to a} \dfrac{f^{\prime}(x)}{g^{\prime}(x)} = A\)。
其中\(x \to a\)改为\(x \to a + 0\)或\(x \to a - 0\)结论仍然成立。
定理3证明
此证明\(A\)是有限的情况,∵\(\lim\limits_{x \to a} \dfrac{f^{\prime}(x)}{g^{\prime}(x)} = A\),所以,对于\(\forall \varepsilon > 0, \exists \delta_{1} > 0\),使得当\(x \in \mathring{U}(a, \delta_{1})\)时,则有 \[\left| \dfrac{f^{\prime}(x)}{g^{\prime}(x)} - A \right| < \dfrac{\varepsilon}{2}.\]
∴\(g^{\prime}(x) \neq 0\)
由柯西中值定理可知,对\(x_{1} \in \mathring{U}(a, \delta_{1}), \exists \xi \in (x_{1}, a)\)或\((a, x_{1})\),使得 \[\dfrac{f(x) - f(a)}{g(x) - g(a)} = \dfrac{f^{\prime}(\xi)}{g^{\prime}(\xi)},\]
因此 \[\left| \dfrac{f(x) - f(a)}{g(x) - g(a)} - A \right| = \left| \dfrac{f^{\prime}(\xi)}{g^{\prime}(\xi)} - A \right| < \dfrac{\varepsilon}{2}.\]
于是,当\(x \neq a\)时,进而有 \[\dfrac{f(x)}{g(x)} = \dfrac{f(x) - f(a)}{g(x)} + \dfrac{f(a)}{g(x)} = \dfrac{g(x) - g(a)}{g(x)} \cdot \dfrac{f(x) - f(a)}{g(x) - g(a)} + \dfrac{f(a)}{g(x)} = \left(1 - \dfrac{g(a)}{g(x)}\right) \cdot \dfrac{f(x) - f(a)}{g(x) - g(a)} + \dfrac{f(a)}{g(x)} \tag{7}\]
因此根据(7)式及基本不等式有 \[\left| \dfrac{f(x)}{g(x)} - A \right| = \left| (1 - \dfrac{g(a)}{g(x)}) \cdot \dfrac{f(x) - f(a)}{g(x) - g(a)} + \dfrac{f(a)}{g(x)} - A \right| \leq \left| 1 - \dfrac{g(a)}{g(x)} \right| \cdot \left| \dfrac{f(x) - f(a)}{g(x) - g(a)} - A \right| + \left| \dfrac{f(a) - Ag(a)}{g(x)} \right| \tag{8},\]
又因为\(\lim\limits_{x \to a} g(x) = \infty\),所以,\(\exists \delta > 0\),使得当\(x \in \mathring{U}(a, \delta)\)时,有 \[0 < 1 - \dfrac{g(a)}{g(x)} < 1, \left| \dfrac{f(a) - Ag(a)}{g(x)} \right| < \dfrac{\varepsilon}{2}, \tag{9}\]
因此,根据(8),(9)式,对于\(\forall \varepsilon > 0, \exists \delta > 0,\) 当\(x \in \mathring{U}(a, \delta)\)时,有 \[\left| \dfrac{f(x)}{g(x)} - A \right| \leq \dfrac{\varepsilon}{2} + \dfrac{\varepsilon}{2} = \varepsilon, \tag{10}\] 进而根据(10)式有\(\lim\limits_{x \to a} \dfrac{f(x)}{g(x)} = A\),故定理3成立。
洛必达法则推论
推论1
设\(f(x)\)在区间\((a, +\infty)\)内可导,若极限\(\lim\limits_{x \to +\infty} f(x)\)与\(\lim\limits_{x \to +\infty} f^{\prime}(x)\)都存在,则有\(\lim\limits_{x \to +\infty} f(x) = 0\)。
推论1证明
假设\(\lim\limits_{x \to +\infty} f^{\prime}(x) = A, \lim\limits_{x \to +\infty} f(x) = B\),根据定理3,则有 \[\lim\limits_{x \to +\infty} \dfrac{f(x)}{x} = \lim\limits_{x \to +\infty} \dfrac{f^{\prime}(x)}{1} = \lim\limits_{x \to +\infty} f^{\prime}(x) = A.\]
又因为\(\lim\limits_{x \to +\infty} f(x)\)存在,所以 \[\lim\limits_{x \to +\infty} \dfrac{f(x)}{x} = \lim\limits_{x \to +\infty} \dfrac{1}{x}\cdot\lim\limits_{ x \rightarrow + \infty } f ( x )= 0 \times B = 0 ,\]
即 \[\lim\limits_{x \to +\infty} f^{\prime}(x) = 0.\]推论2
设\(f(x)\)在\((a_{1}, +\infty)\)内\(n\)阶导数存在,若\(\lim\limits_{x \to +\infty} f(x), \lim\limits_{x \to +\infty} f^{(n)}(x)\)都存在,则有\(\lim\limits_{x \to +\infty} f^{(k)}(x) = 0\)\((k = 1, 2, \cdots, n).\)
推论2证明
根据定理3,则有 \[\lim\limits_{x \to +\infty} \dfrac{f(x)}{x^{k}} = \lim\limits_{x \to +\infty} \dfrac{f^{\prime}(x)}{k x^{(k-1)}} = \lim\limits_{x \to +\infty} \dfrac{f^{\prime}(x)}{k(k-1) x^{(k-2)}} = \cdots = \lim\limits_{x \to +\infty} \dfrac{f^{(k)}(x)}{k!} = \dfrac{1}{k!} \lim\limits_{x \to +\infty} f^{(k)}(x)\]
由\(\lim\limits_{x \to +\infty} f^{(n)}(x)\)存在,所以 \[\lim\limits_{x \to +\infty} \dfrac{f(x)}{x^{k}} = 0,\] 即 \[\lim\limits_{x \to +\infty} f^{(k)}(x) = 0 (k = 1, 2, \cdots, n).\]
推论3
设\(f(x)\)在\((a, +\infty)\)内可导,且 \(\lim\limits_{x \to +\infty} \left[ f(x) + f^{\prime}(x) \right] = A\)(\(A\)为有限数或无穷),则有 \(\lim\limits_{x \to +\infty} f^{\prime}(x) = 0.\)
推论3证明
根据定理3有, \[\lim\limits_{x \to +\infty} f(x) = \lim\limits_{x \to +\infty} \dfrac{e^{x} f(x)}{e^{x}} = \lim\limits_{x \to +\infty} \dfrac{\left[ e^{x} f(x) \right]^{\prime}}{(e^{x})^{\prime}} = \lim\limits_{x \to +\infty} \dfrac{e^{x} f(x) + e^{x} f^{\prime}(x)}{e^{x}} = \lim\limits_{x \to +\infty} \left[ f(x) + f^{\prime}(x) \right] = A,\] ∴ \[\lim\limits_{x \to +\infty} f(x) = A,\] 又∵ \[\lim\limits_{x \to +\infty} \left[ f(x) + f^{\prime}(x) \right] = A,\] 即 \[\lim\limits_{x \to +\infty} f^{\prime}(x) = 0.\]
推论4
设\(f(x)\)在区间\((a, +\infty)\)内可导,若\(\lim\limits_{x \to +\infty} [k_{1} f(x) + k_{2} f^{\prime}(x)] = A\)(其中\(k_{1}\),\(k_{2}\)为正数),则有\(\lim\limits_{x \to +\infty} f(x) = \dfrac{A}{k_{1}}, \lim\limits_{x \to +\infty} f^{\prime}(x) = 0.\)
推论4证明
根据定理3,则有\(\lim\limits_{x \to +\infty} f(x)\)\(= \lim\limits_{x \to +\infty} \dfrac{e^{(k_{1}/k_{2})x} f(x)}{e^{(k_{1}/k_{2})x}}\)\(= \lim\limits_{x \to +\infty} \dfrac{(k_{1}/k_{2}) e^{(k_{1}/k_{2})x} f(x) + e^{(k_{1}/k_{2})x} f^{\prime}(x)}{(k_{1}/k_{2}) e^{(k_{1}/k_{2})x}}\)\(= \lim\limits_{x \to +\infty} \dfrac{(k_{1}/k_{2}) f(x) + f'(x)}{(k_{1}/k_{2})}\)\(= \lim\limits_{x \to +\infty} \left[ f(x) + \dfrac{k_{2}}{k_{1}} f^{\prime}(x) \right]\)\(= \lim\limits_{x \to +\infty} \dfrac{1}{k_{1}} \left[ k_{1} f(x) + k_{2} f^{\prime}(x) \right]\)\(= \dfrac{A}{k_{1}},\)
所以,\(\dfrac{k_{2}}{k_{1}} \lim\limits_{x \to +\infty} f^{\prime}(x)\)\(= \lim\limits_{x \to +\infty} \left[ f(x) + \dfrac{k_{2}}{k_{1}} f^{\prime}(x) - f(x) \right]\)\(= \dfrac{A}{k_{1}} - \dfrac{A}{k_{1}} = 0,\)
故\(\lim\limits_{x \to +\infty} f^{\prime}(x) = 0.\)
注意事项及错误案例
注意事项
- 每次使用洛必达法则前,要注意验证条件的成立,若条件成立可用,否则不能用;
- 若\(\lim\limits_{x \to a} \dfrac{f(x)}{g^{\prime}(x)}\)既不存在也不是∞,且通过应用洛必达法则求导后出现循环式的情况,即通过几次求导后的极限式又回到原式极限,则洛必达法则失效。
\(\lim\limits_{x \to \infty} \dfrac{x + \sin x}{x - \sin x}\);
错误解
因为\(\lim\limits_{x \to \infty} \dfrac{x + \sin x}{x - \sin x} = \lim\limits_{x \to \infty} \dfrac{1 + \cos x}{1 - \cos x}\),此时,发现右端极限不存在,所以判断左端极限也不存在,即原极限不存在。
分析:这种解法错误,因为洛必达法则指明,在适当条件下,\(\lim\limits_{x \to \infty} \dfrac{f^{\prime}(x)}{g^{\prime}(x)} = A \Rightarrow \lim\limits_{x \to \infty} \dfrac{f(x)}{g(x)} = A\),而这里\(\lim\limits_{x \to \infty} \dfrac{f^{\prime}(x)}{g^{\prime}(x)}\)不存在,也不是∞,不具备用洛必达法则的条件,即\(\lim\limits_{x \to \infty} \dfrac{f^{\prime}(x)}{g^{\prime}(x)}\)不存在也不是∞,不能断定原极限不存在,只是说明应用洛必达法则求解失效了,应想办法采用其他方法求解。
正确解
应用极限的四则运算法则及有界函数乘以无穷小仍然是无穷小进行求解,即
\(\lim\limits_{x \to \infty} \dfrac{x + \sin x}{x - \sin x}\)\(= \lim\limits_{x \to \infty} \dfrac{1 + \sin x / x}{1 - \sin x / x}\)\(= \lim\limits_{x \to \infty} \dfrac{1 + (1 / x) \cdot \sin x}{1 - (1 / x) \cdot \sin x}\)\(= \dfrac{1 + 0}{1 - 0} = 1.\)
\(\lim\limits_{x \to 0} \dfrac{x + \cos x}{\sin x}\)。
错误解
\(\lim\limits_{x \to 0} \dfrac{x + \cos x}{\sin x}\)\(= \lim\limits_{x \to 0} \dfrac{1 - \sin x}{\cos x}\)\(= 1.\)
分析:洛必达法则是求\(\dfrac{0}{0}\)型或\(\dfrac{\infty}{\infty}\)型极限的一种方法,此极限既不是\(\dfrac{0}{0}\)型,也不是\(\dfrac{\infty}{\infty}\)型,不能应用洛必达法则求解。应注意洛必达法则不是求极限的万能公式,应用是有前提条件的,每用一次必须验证条件是否成立,只有条件成立才能应用。
正确解
应用无穷大与无穷小的关系求解,因为\(\lim\limits_{x \to 0} \dfrac{\sin x}{1 + \cos x}\)\(= \dfrac{0}{2} = 0,\)
所以\(\lim\limits_{x \to 0} \dfrac{1 + \cos x}{\sin x}\)\(= \infty.\)
发表您的看法